IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Kepler-Ermakov problems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L1385
(http://iopscience.iop.org/0305-4470/24/24/001)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 14:04

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/24/24
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math, Gen. 24 (1991).L1385-L1389. Printed in the UK

LETTER TO THE EDITOR

Kepler—Ermakov problems
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Received 15 August 1991

Abstract. A class of dynamical systems is presented which includes, as special cases, both
the (autonomous} Ermakov system and central force problems of Kepler type with angular
dependence of the force. It is shown that all members of this class are linearizable vp to
a pair of guadratures.

The solutions of the classical, two-dimensional Kepler problem are conic sections.
This follows from the fact that, using the angular momentum, which is an integral of
motion, one may make a simple change of variables which reduces the radial equation
of motion to an inhomogeneous, linear differential equation which has no explicit
dependence on the independent variable [12]. If one allows non-isotropy of the central
force then the situation is only slightly more complex: the inhomogeneity acquires a
dependence upon the independent variable.

Ermakov systems [8], on the other hand, are time-dependent dynamical systems
of the same order as the Kepler problem but having a non-central force law. They
contain one arbitrary function of time and two arbitrary homogeneous functions of
the particle coordinates. Such systems are also linearizable [2]. In particular they
possess an invariant which plays a role analogous to that of the angular momentum
in the Kepler problem. An example of such a system is afforded by the motion of a
massless charge in the field of a fixed electric dipole [5]. In general, though, Ermakov
systems are not Hamiltonian,

Just as the numerical value of the angular momentum in the Kepler problem,
determined by initial conditions, enters into the linearization as a parameter, so does
the invariant in the case of the Ermakov system. In each case the linearization is thus
a one-parameter family of linear equations. Whilst the Kepler problem is an integrable
Hamiltonian system and this dependence upon initial conditions well understood [1],
the Ermakov systems are not generally integrable, even when Hamiltonian. The use
of the linearization in discussing the global properties of the solutions to the nonlinear
system is consequently ad hoc [3, 4].

The purpose of the present letter is to give a class of systems which can be regarded
either as perturbations of the classical Kepler problem or of an autonomous Ermakov
system, which preserve the property of linearizability. Previous work on generalized
Ermakov systems has concentrated on the introduction of greater complexity into the
dependence of the arbitrary functions [10, 11] or on the extension to larger numbers
of dependent variables [6,9] of the time-dependent systems. In the latter case the
systems are clearly reduced to autonomous form up to the solution of a linear equation
[2] so that the time dependence is, in a sense, spurious. The systems to be discussed
here are autonomous. One could reverse the usual autonomizing process to rendet
them non-autonomous but this would be artificial in the present context.
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The transformations to be employed here owe something to the classical theory,
as a perusal of chapter four of [12] will show.
We will call the following the Kepler-Ermakov system:

X 1
i=-ZH+=X
r x?

. (1)
j=-%4H+= Y.
r y
Here H, X and Y are homogeneous functions of x and y of degree zero which remain
unspecified. In the case that H is taken to be identically zero we have the class of
{autonomous) Ermakov systems. If, on the other hand, X and Y are identically zero,
we have a Kepler problem with an angularly dependent central force. The Kepler-
Ermakov system has inverse square and inverse cube terms to the force law. An example
would be a massive, charged particle moving in the field of a massive, fixed dipole. It
is a central force problem only when the homogeneous functions X and Y satisfy
Y =y'X
In polar coordinates the Kepler-Ermakov system takes the form

. 1 1
F—r§ = =3 H+5 R(6)

- P |
ré+2¢6 = ©(0)

where R and @ are suitably related to X and Y.
Since (1} is not a central force problem the angular momentum is not an integral
of motion. Such an integral is, however, afforded by the expression

Iz%(.véja'—xji)2+-"17 {zY(2)—z73X(2)}dz (3)

where n =x/y and X and Y are written as functions of 7. I is called the Ray-Reid-
Lewis invariant [8] in the case where (1) is a Ermakov system. In general (1) has no
further invariant which is a function of x, y, X and y only. We may solve (3) to obtain
xy —xy = h(n; I). An integral of the type (3) exists for a rather wider class of perturba-
tion to the Ermakov system. Only the Kepler-type however admits the linearization
below.

Now introduce a new independent variable ¢ = 1/y. In fact n and  are the choice
of dependent variables used by Whittaker [12] in showing that a general problem of
central force type can be transformed to onc with a parallel field of force. However
we will take ¢ as dependent and n as independent variable, as is effectively done in
linearizing the Kepler problem. Under the change of independent variable, n and ¢
will be related by the separable first order ordinary differential equation

n=¢’(n; Dh(n; I). (4)

Now by expressing all time derivatives as n derivatives in, say, the second of equations
(1). We obtain for i(n; I) the inhomogeneous linear second-order equation

dy

d .
ha(ha)wLY(n)df—H(n) (5)
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where H(n)={(1+%%""2H(x). Because h depends on I, this equation is really a
one-parameter family. If we have a solution (n; I) of (5) for a specific value of I
then we may obtain n as a function of ¢ from (4), thence ¢{=%(¢); I} and so y(¢) and
x(t) for this value of I The general solution of the family (5) will depend upon I and
two constants of integration. Integration of (4) then gives us the requisite four constants.
When (5) is homogeneous (the Ermakov system) one may achieve the integration
of (4) knowing only the general solution of (8). Thus if  is a solution of (5) and ¢*
n lievanely indarmamdant anly Anrtaiel crnla L% on that ontiofae th
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Wronskian identity

dy , dg* 1

~ =T, 6

dn Pr == an A (6}
But then the integral of (4) is

{t=e)i(m; D=¢*(m; I) (7)

which implicity relates n and & In the inhomogeneous case no pair of solutions satisfies
{6) and so the system is linearizable up to two quadratures, the expression for h(n; I)
and the solution of (4).

In the case that (1) is a central force problem with angular dependence, h =+21
is independent of 1.

In solving (4) and (5} one must bear in mind that 5 is a projective variable. If the
orbit of (1) passes across or meets the x-axis it is necessary to transform to the variables
{=y/x and ¢ =1/x. Away from either axis the variables are related by n{=1 and
{r=¢.

Since the role of equation (4) is solely to relate the parameter of the projective line
to the time we may deduce geometrical information about the orbits from equation
(5) alone. Thus for a given value of I and a given solution ¢+(xn; I'} of (5) the equations

x(n)= (8)

1
¥(n; I) dl( I}

give a parametrization by n of the orbit 3 (x/y; 1) =1. An important consequence of
the linearization (5) is that we may obtain the general orbit with a given value of I
from three particuiar integrais of equations (i) having that same vaiue of L
Consider firstly the Ermakov system, H(n)= 0. For a given value of I let ®,(x, y) =0
and @,(x, y) =0 be a pair of orbits not related by a simpie dilation. Provided they do
not pass through the origin we may parametrize them in the form (8) for suitable
functions ¢, and . Since the orbits are not related by dilation, ¢, and ¢, are linearly
independent solutions to (5) whose general solution is then ap = ¢, + ey, ¢ and ¢,

Delﬂg druurdry consianis. The orbit bUl’l’cprl’lUlﬂg to this IJI is

_ yi{m)y2{n) - x,(17)%2(n)
y(n)dclh(’?)""’-'z}’:("?) *(n) X))+ 6x,(7)

where (x;(n), ¥.(n)) (i =1, 2) are the n-parametrizations of the given orbits &, =0and
&, =0. Equations (9) and the corresponding ones involving { describe the general

Aarkit with tha anmneamreiata yalnie of T
VLULLL wiLll I.ll\.a ayplupxxau; YOIUW Ul l.

Now consider the Kepler-Ermakov system. For a given value of I let ®,(x, y) =0,
®,(x, y) =0and d,(x, y)} = 0 be three orbits such that the parametrizations (x;(n), yi(n))
do not satisfy a relation of the form

MYayst Ayt Ay y2=0 (10)

y(m)=

(9)
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for all  and any constants Ay, A, and A, whose sum vanishes. We have corresponding
functions lf’iﬂ"?, InN{i=1,2, 3)_which satisfy the inhomogeneous equation (5). Then the
differences yr; = 1, — ¢, and s, = i, — 15 satisfy the homogeneous form of (5) and are
linearly independent by virtue of not satisfying (10). Now the solution of the
inhomogeneous equation (5) is found by the method of variation of constants to be
1. ["H- 1 - ["H-
=— — g dn-— ks

v w‘!’ljﬂh‘f’:» 7 w'i’:*.J.b h'l’ldﬂ (11)
where w= h[:ﬁg:ﬂ, -&zaﬁ;] is a constant determined by }he ¢; (i=1,2,3)and g and b
are arbitrary constants within the domains of h, ¢, and y»;. The corresponding equation
for y can be written symmetrically as

1 1 ("Hf{1 1\ 1 ("H{1 1\ 1 {"H/{1 1
DA AL o
Yy vl b \y2 yi/ 2l h\ys »/ wlo,h\n o »

M1, 72 and n; being constanis satisfying the single relation

mH1 [(mA1 [mH1
——+ ——+ ——=0, (13)
ﬂzhyl mhy2 mhys

The equation for x(n) is obvious.

It also follows, of course, from the above argument that the general solution of a
Kepler-Ermakov system (1) is deducible from the general solution of the Ermakov
system obtained by omitting the inverse square terms in the force law. Most trivially
it is easy to construct the general solution to the Kepler problem from a general pair
of solutions, namely straight lines, of the system ¥ = j = 0 i.e. to construct the general
conic section from the family of degenerate conic sections.

A less trivial example is the following. Consider the system

. x 1 x
xX= —?4‘?—(1 _#2)?
(14)

Let us define a new variable Q by #°=I + a cos Q where a’= I*— 1. The linearization
is then

d’y 1

—_— gt =

a2 ¥ v (1+1+acosl)’?
in which the homogeneous part happens to be independent of I We may take

l,f;l =sin ufl, :,52 = cos uilin (11) noting that dn = h(xn; I') dQ to obtain parametrizations
via {) of the general solution curve.

(15)
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