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LElTER TO THE EDITOR 

Kepler-Ermakov problems 
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Abstract. A class of dynamical systems is presented which includes, as special cases, both 
the (autonomous) Ermakov system and central force problems of Kepler type with angular 
dependence of the force. It is shown that all members of this class are linearizable up to 
a pair of quadratures. 

The solutions of the classical, two-dimensional Kepler problem are conic sections. 
This follows from the fact that, using the angular momentum, which is an integral of 
motion, one may make a simple change of variables which reduces the radial equation 
of motion to an inhomogeneous, linear differential equation which has no explicit 
dependence on the independent variable [12]. If one allows non-isotropy of the central 
force then the situation is only slightly more complex: the inhomogeneity acquires a 
dependence upon the independent variable. 

Ermakov systems [SI, on the other hand, are time-dependent dynamical systems 
of the same order as the Kepler problem hut having a non-central force law. They 
contain one arbitrary function of time and two arbitrav homogeneous functions of 
the particle coordinates. Such systems are also linearizable [2]. In particular they 
possess an invariant which plays a role analogous to that of the angular momentum 
in the Kepler problem. An example of such a system is afforded by the motion of a 
massless charge in the field of a fixed electric dipole [SI. In general, though, Ermakov 
systems are not Hamiltonian. 

Just as the numerical value of the angular momentum in the Kepler problem, 
determined by initial conditions, enters into the linearization as a parameter, so does 
the invariant in the case of the Ermakov system. In each case the linearization is thus 
a one-parameter family of linear equations. Whilst the Kepler problem is an integrable 
Hamiltonian system and this dependence upon initial conditions well understood [I], 
the Ermakov systems are not generally integrable, even when Hamiltonian. The use 
of the linearization in discussing the global properties of the solutions to the nonlinear 
system is consequently ad hoc [3,4]. 

The purpose of the present letter is to give a class of systems which can he regarded 
either as perturbations of the classical Kepler problem or of an autonomous Ermakov 
system, which preserve the property of linearizability. Previous work on generalized 
Ermakov systems has concentrated on the introduction of greater complexity into the 
dependence of the arbitrary functions [lo, 111 or on the extension to larger numbers 
of dependent variables [6,9] of the time-dependent systems. In the latter case the 
systems are clearly reduced to autonomous form up to the solution of a linear equation 
[2] so that the time dependence is, in a sense, spurious. The systems to be discussed 
here are autonomous. One could reverse the usual autonomizing process to render 
them non-autonomous but this would be artificial in the present context. 
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The transfonnations to be employed here owe something to the classical theory, 

We will call the following the Kepler-Ennakov system: 
as a perusal of chapter four of [12] will show. 

Here H, X and Y are homogeneous functions of x and y of degree zero which remain 
unspecified. In the case that H is taken to be identically zero we have the class of 
(autonomous) Ermakov systems. If, on the other hand, X and Y are identically zero, 
we have a Kepler problem with an angularly dependent central force. The Kepler- 
Ermakov system has inverse square and inverse cube terms to the force law. An example 
would be a massive, charged particle moving in the field of a massive, fixed dipole. It 
is a central force problem only when the homogeneous functions X and Y satisfy 
x 4 Y = y 4 X .  

In polar coordinates the Kepler-Ermakov system takes the form 

1 1 ;-re2= -- H + -  R ( 0 )  
r 2  r3 

rO+2+6=,@(0) 1 
r 

where R and 0 are suitably related to X and Y. 

of motion. Such an integral is, however, afforded by the expression 
Since (1) is not a central force problem the angular momentum is not an integral 

I =f(xy-xy)*+ { ~ Y ( z ) - z - ~ X ( z ) }  dz (3) I" 
where q = x / y  and X and Y are written as functions of q. I is called the Ray-Reid- 
Lewis invariant [ 8 ]  in the case where ( 1 )  is a Ermakov system. In general (1)  has no 
further invariant which is a function of x, y ,  x and y only. We may solve (3) to obtain 
xy - xp = h ( q ;  I). An integral of the type (3) exists for a rather wider class of perturba- 
tion to the Ermakov system, Only the Kepler-type however admits the linearization 
below. 

Now introduce a new independent variable @ = l /y.  In fact q and JI are the choice 
of dependent variables used by Whittaker [12] in showing that a general problem of 
central force type can be transformed to one with a parallel field of force. However 
we will take # as dependent and as independent variable, as is effectively done in 
linearizing the Kepler problem. Under the change of independent variable, q and f 
will be related by the separable first order ordinary differential equation 

i = ~ 1 ~ ( ~ ;  oh(?; 1). (4) 

Now by expressing all time derivatives as 7 derivatives in, say, the second of equations 
(1). We obtain for #(q; I) the inhomogeneous linear second-order equation 



Letter to the Editor L1307 

where ~ ( I ) ) = ( ~ + I ) ' ) - ~ ' ~ H ( I ) ) .  Because h depends on I, this equation is really a 
one-parameter family. If we have a solution +(I); I) of ( 5 )  for a specific value of I 
then we may obtain I) as a function of t from (4), thence +(I)([); I) and so y ( t )  and 
x(t) for this value of I. The general solution of the family ( 5 )  will depend upon I and 
two constants of integration. Integration of (4) then gives us the requisite four constants. 

When ( 5 )  is homogeneous (the Ermakov system) one may achieve the integration 
of (4) knowing only the general solution of ( 5 ) .  Thus if JI is a solution of (5) and +* 

Wronskian identity 
a kGea;py indepen&nt so!i;:ian we may ceiiaiiipy sca:2 $* jo :h2; ii saiisfies :he 

But then the integral of (4) is 

(i-cj+(T; i j = @ * ( v ; i )  (ij 

which implicity relates I) and 1. In the inhomogeneous case no pair of solutions satisfies 
( 6 )  and so the system is linearizable up to two quadratures, the expression for h(v; I) 
and the solution of (4). 

In the case that (1)  is a central force problem with angular dependence, h =v'% 
is independent of I). 

In solving (4) and ( 5 )  one must bear in mind that I) is a projective variable. If the 
orbit of (1) passes across or meets the x-axis it is necessary to  transform to the variables 
l= y/x and rp = l/x. Away from either axis the variables are related by I)[= 1 and 
l* = rp. 

Since the role of equation (4) is solely to relate the parameter of the projective line 
to the time we may deduce geometrical information about the orbits from equation 
(5) alone. Thus for a given value of I and a given solution +(I); I) of (5) the equations 

give a parametrization by I) of the orbit y+(x/y; I) = 1. An important consequence of 
the linearization ( 5 )  is that we may obtain the general orbit with a given value of I 
from three particuiar integrais of equations ( i )  having that same vaiue of I. 

Consider firstly the Ermakov system, H (  I)) = 0. For a given value of I let Ql (x, y) = 0 
and Cg2(x, y )  = 0 be a pair of orbits not related by a simple dilation. Provided they do 
not pass through the origin we may parametrize them in the form (8) for suitable 
functions +I and $r2. Since the orbits are not related by dilation, +, and JI2 are linearly 
independent solutions to ( 5 )  whose general solution is then + = cl$, + c ~ + ~ ,  c, and c2 
being arbiirary consianis. Tne orbii corresponding io this + is 

where (xi( I)), y ; ( ~ ) ) )  ( i  = 1.2) are the 7-parametrizations of the given orbits Cg, = 0 and 
Q2=0. Equations (9) and the corresponding ones involving 5 describe the general 

Now consider the Kepler-Ermakov system. For a given value of I let Cg,(x, y) = 0, 
Q 2 ( x , y )  =OandQ,(x,y)=Obethreeorbitssuchthattheparametrizations (x~(I)), y i ( v ) )  
do not satisfy a relation of the form 

--hit ... ith the ------A-+- .r-l..- -F I 
V . V L L  W l U l  lllr ay.y,Vy"*L' .-I".. "L 1. 

A 1 ~ 2 ~ 3 +  A2.hy1 +A3y1y2= 0 ( 10) 
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for all q and any constants A,,  A2 and AI whose sum vanishes. We have corresponding 
functions Jl,(q, I) ( i  = 1,2,3)-which satisfy the inhomogeneous equation ( 5 ) .  Then the 
differences G3 = $, - (k2 and $I = $2 - $3 satisfy the homogeneous form of ( 5 )  and are 
linearly independent by virtue of not satisfying (IO). Now the solution of the 
inhomogeneous equation ( 5 )  is found by the method of variation of constants to be 

where w = h[&$, - $2&] is a constant determined by the  $; ( i  = 1,2,3) and (1 and b 
are arbitrary constants within the domains of h, $, and $ 3 .  The corresponding equation 
for y can be written symmetrically as 

q l ,  q2 and q3 being constants satisfying the single relation 

The equation for x( q) is obvious. 
It also follows, of course, from the above argument that the general solution of a 

Kepler-Ermakov system (1) is deducible from the general solution of the Ermakov 
system obtained by omitting the inverse square terms in the force law. Most trivially 
it is easy to construct the general solution to the Kepler problem from a general pair 
of solutions, namely straight lines, of the system x = y = 0 i.e. to construct the general 
conic section from the family of degenerate conic sections. 

A less trivial example is the following. Consider the system 

Let us define a new variable fl by q2  = I + a cos fl where a* = I' - 1. The linearization 
is then 

in which the homogeneous part happens to be independent of I. We may take 

via fl of the general solution curve. 
$ - .  , -sin pfl, G2 = cos pfl in (11) noting that d q  = h(  q ;  I) dfl  to obtain parametrizations 
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